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We measured ultra-small-angle neutron scattering �USANS� from polymethylmethacrylate spheres tamped
down in air. Two slightly polydisperse pure sphere sizes �1.5 and 7.5 �m diameters� and five mixtures of these
were used. All were loose packed �packing fractions of 0.3–0.6� with nongravitational forces �e.g., friction�
important, preventing close packing. The USANS data are rich in information on powder packing. A modified
Percus-Yevick fluid model was used to parametrize the data—adequately but not well. The modifications
required the introduction of small voids, less than the sphere size, and a parameter reflecting substantial
deviation from the Percus-Yevick prediction of the sphere-sphere correlation function. The mixed samples
fitted less well, and two further modifying factors were necessary. These were local inhomogeneities, where the
concentration of same-size spheres, both large and small, deviated from the mean packing, and a factor
accounting for the presence within these “clusters” of self-avoidance of the large spheres �that is, large spheres
coated with more small spheres than Percus-Yevick would predict�. The overall deviations from the hard-
sphere Percus-Yevick model that we find here suggest that fluid models of loose packed powders are unlikely
to be successful but lay the ground work for future theoretical and computational works.
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I. INTRODUCTION

A. Context and purpose

The packing of spheres is an immense, venerable, and
active area of research; the general context of which can be
found in the recent paper of Agnolin and Roux �1�. Our
interest is particularly in the factors affecting the formation,
the rheology, and the stability of highly concentrated emul-
sions, which are not well known. The nanometer scale struc-
tures of such emulsions—micelles and adsorbed surfactant
monolayers—have been studied by small angle neutron scat-
tering �SANS� �2–7�. We have also performed ultra-small-
angle neutron scattering �USANS� experiments to give infor-
mation on the micrometer-scale structures from a variety of
emulsions �8�. These scattering curves contain useful infor-
mation about droplet size distribution and correlations, but
current sphere packing models do not extend to such high
packing fractions �90–95 %� of such polydisperse particles.

To examine approximations that may be useful in model-
ing high packing fraction emulsion data, we have begun ex-
periments on simpler assemblies of spherical beads. For
beads and powders in the micrometer size range the results
from larger sphere sizes cannot be scaled, as frictional and
electrical forces become comparable to gravitational and
substantially modify structures. Here we present results from
relatively monodisperse polymer spheres of micrometer di-
ameter and their binary mixtures in air at measured packing
fractions from about 0.3–0.6. Such small jamming thresholds
may be surprising; but aside from the experimental evidence,
recent theory has shown that in tunneled crystals packing
fractions as low as 0.49 can be obtained �9�.

Agnolin and Roux �1� point out that information-rich ex-
perimental observation of packing microstructure has been
difficult, and that experimental observations are required if
we are to understand how closely numerical simulations re-
semble real-life systems. X-ray microtomography has been
used to study the packing of large numbers of glass and
acrylic beads in great detail �10–13�, but small spheres can-
not be studied because the resolution is limited to
30–60 �m. Confocal microscopy can be used for smaller
spheres in emulsions, and glass beads, since it has a reso-
lution of about 1 �m �8,14,15� but has the disadvantage of
sampling very small volumes within the sample. Moreover,
images cannot readily be resolved deep enough within the
sample to unambiguously avoid edge effects.

USANS experimental results on packed spheres are pre-
sented in this paper. They show that USANS is a useful
technique for examining micron-scale sphere packing, with
results that are information rich. USANS spans the length
ranges of approximately 0.5–20 �m and samples the bulk
material with scattering arising from relatively large illumi-
nated volumes. A modified Percus-Yevick fluid model, with a
number of empirical adjustable parameters, is used to fit the
data and shows that useful discrimination between different
packing models may be possible with USANS. In subsequent
work we hope to provide more satisfactory models, ideally
using computational simulations.

B. Previous work

Previous experiments have been performed on microme-
ter or nanometer scale assembly of colloids �16–19�, alloys
�20�, and powders �21–23� using USANS �16�, ultra-small
angle x-ray scattering �24�, SANS �19�, and small angle*Corresponding author; d.mcgillivray@auckland.ac.nz
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x-ray scattering �17,18�, as well as many other techniques
�21,22,25–27�. The appropriate fluid scattering models have
been successfully fitted to monomodal concentrated oil-in-
water emulsions �16�, monomodal, bimodal, and trimodal
Stober colloidal silica particles �17,24�; monomodal �18,26�
and bimodal �25,27� concentrated latex or other polymer col-
loids; and dilute bimodal polymer colloid mixtures �19�. All
except Sztucki et al. �24� do not need to invoke any force
other than simple hard-sphere repulsion.
Sztucki et al. also invoke a short-range hard-sphere sticki-
ness.

Our experiments involve micrometer-scale polymer pow-
der mixtures in air. Relevant simulation and packing fraction
experiments show that similar powders are structured by
highly significant nongravitational forces, as well as gravita-
tion �28–30�. There have also been many computer simula-
tions including size-polydisperse hard-sphere packing �31�
and the voids within them �32�. Particularly relevant here are
discussions of voids in loose packed powders �22,33�. From
all these results, it seems clear that polymer spheres of
1–10 �m diameter will loose pack, with packing fractions
of up to half the random close packing value of about 0.65,
and will contain substantial amounts of void space. This is
because electrical and frictional forces are significant com-
pared to gravity. In contrast with the colloid experiments
mentioned above, the models used to fit those data will not,
as we will demonstrate below, fit our data. The colloid data
also contrast with large hard-sphere packing in which gravity
is dominant, for spheres of tenths of millimeter diameter or
larger. This is where most experimental and theoretical ac-
tivities have been concentrated �1,10–13,15,34–42�. Packing
fractions exceed 0.55, and again the simplest fluid models,
such as the Percus-Yevick, are inadequate, although bearing
a resemblance to simulation results �36�. The best models,
unfortunately, become empirical.

Various theories have been developed to explain the scat-
tering from moderately concentrated assemblies of spheres.
The simplest relatively realistic solutions involve spheres
with Schulz size polydispersity, modeled as a fluid using the
Percus-Yevick closure condition. These fit the colloid data
relatively well, but not large hard-sphere experimental data.
Exact analytical solutions for the scattering have been pub-
lished by Griffith et al. for a monomodal distribution �43�,
Ginoza and Yasutomi for a bimodal “mixture” �44�, and in-
dependently by Vrij �45� and Blum and Stell �46� a numeri-
cal solution for an arbitrary size distribution. There are vari-
ous approximations or simplifications to these that have been
published, notably Ashcroft and Langreth’s exact solution to
the scattering from a binary mixture of monodisperse par-
ticles �23�. In addition Kotlarchyk and Chen �47� published
an approximate theory, the “decoupling approximation,”
separating intensity into a product of sphere self-scattering
�form factor� and sphere-sphere interference �structure fac-
tor�, together with useful averages such as the average sphere
form factor of particles with a Schulz polydispersity. We ap-
ply these theories to our data to show that, unlike colloids,
but like large hard spheres, assemblies of small hard spheres
require more complex theories than those based on the
Percus-Yevick model to explain their structure. Where the
spheres are subjected to frictional forces in addition to grav-

ity, different structures with the same packing fraction be-
come likely, with the differences dependent on sample his-
tory �1�. Packing fractions become smaller than equilibrium
or metastable values �39�.

II. EXPERIMENT

A. Polymer spheres and sample preparation method

We used two samples of dry polymer microspheres ob-
tained from Bangs Laboratories Inc. �Indiana�. They were
fabricated from a mixture of 95% polymethylmethacrylate
�PMMA� and 5% polydivinylbenzene �by mass� and had a
hydrophilic sulfate ion surface coating. The specifications
quote the density of the bulk polymer mixture as
1.19 g mL−1. The producer stated values are 1.5�2� and
9.9�14� �m for the mean diameter of the spheres, with the
estimated standard error given in parentheses. Samples con-
taining 100%, 80%, 70%, 60%, 50%, 40%, and 0% of the
larger sphere, by mass, and complementary amounts of
smaller sphere were weighed out, and thoroughly macro-
scopically mixed, using a vortex mixer and grinding in a
mortar and pestle.

B. USANS experiments

Samples were prepared by filling the cell with the pre-
mixed microsphere mixture and tamped by firmly knocking
the cell downward onto a horizontal surface until there was
no more change in the level of the sample at the top of the
cell. The density of material tamped in a similar way in
cylindrical glass containers was measured volumetrically to
give a powder packing fraction.

The USANS experiments were performed using the BT5
thermal neutron double-crystal instrument at the National In-
stitute of Standards and Technology Center for Neutron Re-
search, MD, USA �48�. 1-mm-thick samples were run for
between 6 and 8 h each in quartz-windowed cells at a neu-
tron wavelength of 2.4 Å. Transmissions were high, always
greater than 58%. The Q-dependent scattered beam intensity
was always less than 20% and mostly less than 10% of the
incident intensity. With these low values multiple scattering
can be, and has been, neglected.

The scattering vector Q is defined as the difference be-
tween the incident and the scattered neutron wave vectors.
For elastic scattering, Q= �Q�=4� sin � /�, where 2� is the
angle through which neutrons are scattered and � is the neu-
tron wavelength. A background from an empty beam run was
subtracted from all the data, and the subtracted data pro-
cessed to an absolute scale using the “straight through” beam
intensities. A typical run allowed measurements with
3�10−5�Qh�5�10−2 Å−1, where Qh is the wave-vector
component in the horizontal plane. This corresponds to prob-
ing length scales from 0.15 to 20 �m. The instrument has a
vertical line beam profile extended in the vertical direction
corresponding to a Qv of maximum of �0.117 Å−1. The
observed beam intensity at any nominal Qh is thus a convo-
lution of a range of actual Q. It is possible to desmear the
observed data in order to simulate what would be seen by a
pinhole beam method, with excellent resolution in both
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planes. This desmearing can be performed by direct nonit-
erative methods �49�. While the solutions are not unique,
they are known to be reliable when used with caution. The
results are shown in Fig. 1.

III. DATA ANALYSIS

The results of Yu et al. �29,30� imply that in our case we
will require corrections to account for the change in sphere-
sphere correlation from a Percus-Yevick fluid. These are
caused by void formation, or conversely clustering, as a re-
sult of sphere-sphere attraction. In addition we are often
working at packing fractions greater than 0.4 where it is
known that the Percus-Yevick approximation gradually fails
�50,51�. It is also clear from previous results, and prelimi-
nary modeling of our own, that we cannot neglect the effect
of particle size polydispersity, even when, as here, it is quite
narrow �43�.

A. Unmixed spheres

Given that a complete, satisfactorily accurate, and simple
model is unlikely, we will proceed in steps. First, we can
estimate the invariant and Porod constants from the USANS
data and from them produce model-independent estimates of
packing fractions and scattering length densities �8,51�. If we
assume monodispersity of spheres, we derive packing frac-
tions of 0.45 and 0.61 for the smaller and the larger sphere
samples. The scattering length densities derived from the
data are 1.17�10−6 and 1.24�10−6 Å−2. These are close to
the value of 1.10�10−6 Å−2 calculated from the formulas
and the bulk density of the constituent polymers.

Second, we can assume that at high Q the sphere-sphere
structure factors will be close to unity and that the features in
the USANS data will arise solely from the average spherical
form factor over each Schulz particle size distribution,
�PS�Q�� and �PL�Q��, where the subscripts S and L refer to
small and large spheres. This fit is shown in Fig. 2. The
scattering length densities were fixed at the values obtained
from the invariant/Porod analysis, so the fitted packing frac-
tions also closely resemble those values, differing slightly
because we now account for polydispersity in the spheres.
We obtain mean sphere diameters of 1.528�2� �m and
7.540�4� �m, with polydispersities of 0.085�1� and
0.144�1�, and with packing fractions 0.440�3� and 0.685�1�.

We have found that we require two corrections to provide
a good fit to all the data. The first is a correction for the
persistence of voids in the sample and uses the Debye-Buche
approximation for changes in the sphere-sphere correlation
function or structure factor �24,33,52�. This we write as a
Lorentzian correction,

SDB�Q� = A0/�1 + Q2	2�2, �1�

where the packing-fraction-dependent parameters A0 and 	
give, respectively, the total volume of void and void size �	
is, more precisely, the correlation length of the void�. Infor-
mation on voids in powders is scarce �10,22,32,33,39�. Ri-
chard et al. �10� showed experimentally that the voids in
their 200–400 �m glass bead system are almost all smaller
than the sphere diameter and have a wide distribution of
sizes depending on the amount of compaction. Our model of
spherical smooth surfaced voids of air contrasted against a
uniform background is oversimplified as the surface is not
truly smooth. Also the uniform background has the averaged
scattering length density of packed spheres with air inter-
stices. Given the complexity there, and lack of knowledge, a
more detailed model than the Debye-Buche correction seems
unwarranted.
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FIG. 1. �Color online� Desmeared USANS data from sphere
mixtures. 0% large sphere data �=100% small spheres� are plotted
on absolute scale; subsequent plots are displaced upward by �per-
centage large sphere�/10 decades. Thus for 50% large spheres the
intensity plotted is 105 times experimental value. Error bars are
within points except at highest Q.
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FIG. 2. �Color online� Fit of uncorrelated sphere model to only
the high Q scattering data from samples of unmixed large spheres
�red online� and unmixed small spheres �blue online�.
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The second correction is necessary as we find that the
usual Percus-Yevick fluid model for the scattering intensity
does not fit well. A much better fit is obtained if we use a
separated “measurable structure factor,” SSS

M �Q�, and “mean
form factor” �PS�Q��, both defined in the Appendix. Each
has a separate adjustable polydispersity, p and q respectively.
Finally the packing fraction and scattering length density
have been fixed at the values derived from the invariant/
Porod analysis. This model then contains five parameters,
sphere diameter �d� and polydispersity �p�, structure factor
polydispersity �q�, and the two void parameters �A0 and 	�.
The fitting is shown in Fig. 3�a�, while the parameters are
given in Table I. We should note that the very small standard
errors of about 1 part in 104 in Table I for the diameters are
underestimated because the systematic errors in Q and inten-
sity, while small, have not been factored into the analysis.
The impact of the two corrections applied can be seen in
Figs. 3�b� and 3�c�. Figure 3�b� shows the results of fitting
while omitting the Debye-Buche correction for voids, but
with pS and qS varying independently. The correction has

little effect at high Q, or on the Porod constant, or invariant.
Thus the preliminary analysis based on the latter two is little
affected. Figure 3�c� shows the results of constraining pS to
equal qS that is having a Percus-Yevick fluid perturbed only
by the void Debye-Buche correction. Figure 3�d� shows the
total measurable structure factor �SSL

M �Q�+SDB�Q�� derived
from the best-fit model.
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FIG. 3. �Color online� �a� Fit to the modified fluid model for unmixed large and unmixed small spheres �as labelled�. �b� Fit to the
modified fluid model to scattering data from unmixed spheres, omitting Debye-Buche void correction. Data from unmixed large spheres and
unmixed small spheres are as labelled on the graph. �c� Fit to the modified fluid model to scattering data from unmixed spheres, including
the Debye-Buche void correction but using only a single polydispersity parameter �i.e., pS=qS�. Data from unmixed large spheres and
unmixed small spheres are as labelled on the graph. �d� The total measurable structure factor �SS

M�Q�+SDB�Q�� from the best fit model
plotted in Fig. 3�a�, for small and large unmixed spheres �as labelled�.

TABLE I. Fitted model parameters for unmixed spheres using
best-fit model. Estimated uncertainties are given in parentheses.

Parameter Small sphere Large sphere

Sphere diameter d ��m� 1.5210�1� 7.536�2�
Sphere polydispersity pS/L 0.085�1� 0.144�1�
Structure factor polydispersity qS/L 0.177�1� 0.251�1�
void size 	 ��m� 0.455�4� 1.6�1�
void amount A0 �unscaled� 1.53�1� 0.00016�1�
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B. Mixed spheres

The intensity of scattering from a system of mixed
spheres is again modeled as consisting of void scattering and
a modified Percus-Yevick fluid scattering, with the void scat-
tering modeled by a Debye-Buche two-parameter expression
generalized in an obvious way from the unmixed model. The
unmodified analytical solution for a two-component Percus-
Yevick fluid fits poorly. As with the one-component model-

ing we have had to invoke a separate “structure factor poly-
dispersity” parameter �qS and qL for small and large spheres�.
This requires the use of both one-component and two-
component analytical solutions for the scattering. The total
Percus-Yevick scattering is the sum of three terms,
ISS�Q ,
L ,
S�—the scattering from interference between
small spheres and small spheres and the corresponding large-
large and large-small terms, as detailed in the Appendix. 
L
and 
S are the volume fractions occupied by large and small
spheres in the mixture. To provide better fits we also allow
small-large sphere correlations to vary independently of self-
correlations �large-large and small-small� using parameters
M and F, respectively �see Appendix for details�. This per-
mits a balance of clustering not catered for in the Percus-
Yevick model.

These various empirical approximations, required to ob-
tain a reasonable fit, result in a large number of parameters
needed to calculate the intensity. Some can be fixed from the
unmixed data fits—sphere radii, sphere polydispersity, and
particle scattering length density. We also know indepen-
dently from the sample preparation the ratio of 
L to 
S.
This leaves seven parameters to be fitted, two associated
with the partial measurable structure factors �qS and qL�, two
with the Debye-Buche void correction approximation �A0
and 	�, the parameters M and F, and one for the total sphere
packing fraction. The total packing fraction must be fitted as
it is not precisely known, and as we have seen from the
unmixed data may differ from the volumetric measurements.
The two individual sphere packing fractions can be deter-
mined by constraining the ratio of 
S /
L to that as made up.

The results of this fit to the 50% data are shown in Fig.
4�a�. For comparison we can neglect the intensity of scatter-
ing from large-small sphere interference effects, by putting
M =0, known as the local monodisperse approximation �53�
�Fig. 4�b��. Figure 4�c� shows the best fit to the data when F
is set to 1 and M is allowed to vary. This assumes that our
approximation for the mixed intensity is adequate and there
is no phase separation of large and small spheres. The pa-
rameters resulting from the three approximations are given in
Table II. Where the parameters are noted “fixed” attempts to
allow variation resulted in unstable fits. This is because in
the mixed data 	 is strongly correlated with qL. These param-
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FIG. 4. �Color online� �a� Seven-parameter modified fluid model
for mixed spheres �line� fit to the data from a mixture of 50% by
mass each of large and small spheres. �b� Local monodisperse
model for mixed spheres �line� fit to the data from a mixture of 50%
by mass each of large and small spheres. �c� Seven-parameter
model for mixed spheres with the amount of demixing set to zero
�line� fit to the data from a mixture of 50% by mass each of large
and small spheres.

TABLE II. Parameter values obtained for refinements of 50%
data. Models named by related figure in which the derived fits are
displayed. Estimated uncertainties are given in parentheses. “Fixed”
denotes that the parameter was not allowed to vary in the modeling.

Parameter 4a 4b 4c

qS 0.085�1� 0.085�1� 0.085�fixed�
qL 0.153�2� 0.220�1� 0.153�fixed�
	 ��m� 1.42�6� 1.42�fixed� 1.42�fixed�
A0 0.273�3� 0.037�1� 0.035�6�
M 1.70�2� 0 2.33�1�
F 0.492�3� 0.193�1� 1


S 0.259�1� 0.337�1� 0.166�1�

L =
S =
S =
S
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eters both affect only low Q data, a region that may be over-
parametrized.

It is possible to obtain an improved fit if we allow 
L and

S to vary independently. This results in a packing fraction
ratio strongly different from that in the mixture as made up.
We consider this model as overparametrized.

The best model, illustrated in Fig. 4�a� for 50% large
sphere data, is shown fitted to all the mixed data in Fig. 5
with the parameter values obtained given in Table III. To
provide as unbiased an estimate of all the packing fractions,
as we can from the USANS data, we have used the best
models for all the data, varying only the total packing frac-
tion, keeping all other parameters at their refined values. We
restricted the data to those with Q�1�10−3 Å−1. In this
region we have almost no contribution from any variation in
structure factor. The results are shown in Fig. 6.

IV. DISCUSSION

A. Packing fraction

The volumetrically measured total packing fraction varies
from 0.334 for the pure 1.52 �m diameter spheres to 0.526
for the 7.54 �m diameter spheres. The packing fractions of
the mixtures are intermediate between those values, declin-
ing in a linear trend with increasing small sphere proportion.
The corresponding values derived from the USANS mea-
surements, by adding together the small and large sphere
packing fractions 
S and 
L, are higher �0.42�1� for the
small spheres to 0.59�2� for the large spheres� and show
larger variation from a linear trend �see Fig. 6�. We should
note that the USANS “packing fraction” does not include the
contribution from voids modeled by the Debye-Buche cor-
rection and is thus a lower bound. The void contribution can
be calculated from the parameters A0 and 	. The values cal-
culated cluster around a reasonable value of 0.1, with errors
of comparable size. This is because of the dependence of the
value of the void packing fraction on the third power of 	
and systematic errors in the latter, which make a useful esti-
mate from this model impossible. It is clear that a better
model for voids, indeed the whole structure, is needed. The
differences between the two techniques can best be attributed
to variations in the tamping between the different containers
and from sample to sample—in particular if the tamping
from the “as poured” state to the “fully tamped” state is not
fully accomplished and slightly variable. Yu et al. �30� mea-
sured the difference in packing fraction between these two
states as about 0.15, almost independent of particle size,
within the difference between the measurements.

All these values are well below the total packing fraction
of about 0.65 expected for unmixed-sphere random close
packing, with even higher values expected for binary mix-
tures. The role of nongravitational forces does appear impor-
tant. If this is so, the smaller particles are expected to be less
densely packed, as observed. Yu et al. �29,30�, in both ex-
periment on alumina powders and computer simulation,
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FIG. 5. �Color online� Desmeared USANS data from binary
sphere mixtures, overlaid with best-fit modeled intensities. 0% large
sphere intensities �not shown� are the experimental values, with
subsequent plots displaced upward in intensity by �percentage large
sphere�/10 decades. Thus for 50% large spheres the intensity plotted
is 105 times experimental value. The model fits are the solid lines.

TABLE III. Parameter values obtained for refinements of the
mixed-sphere data. Estimated uncertainties are given in
parentheses.

% large sphere
�by mass� 80 70 60 50 40

qS 0.085�1� 0.085�1� 0.085�1� 0.085�1� 0.085�1�
qL 0.169�3� 0.164�2� 0.156�3� 0.153�2� 0.140�3�
	 ��m� 0.05�3� 0.27�5� 0.73�3� 1.42�6� 1.3�1�
A0 0.142�2� 0.177�3� 0.279�6� 0.273�3� 0.39�2�
M 3.81�6� 4.1�2� 1.77�3� 1.70�2� 1.80�3�
F 0.67�1� 0.47�1� 0.569�5� 0.492�3� 0.62�1�

S 0.084�1� 0.125�1� 0.198�1� 0.259�1� 0.268�1�
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FIG. 6. �Color online� Total packing fraction in mixtures of
large and small spheres measured volumetrically �hollow circles�
and determined from USANS data �filled circles�. The lines are
best-fit linear regressions to the data.
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found qualitatively similar effects—packing fraction of about
0.2 for 1 �m particles to 0.4 for 10 �m particles. We
should not expect exact agreement given the differences in
mechanical and electrical properties of the various particles,
and that the computer simulation is closer to an as poured
than fully tamped state.

B. Qualitative

For the pure small spheres we see the characteristic oscil-
lations in intensity at high Q for relatively monodisperse
spheres, with the oscillations shifted to lower Q larger
spheres. At the lowest Q the large sphere data show a down-
turn in intensity, resembling that for a close packed fluid; but
the data for the smaller spheres continue to increase. We can
ascribe this to the larger deviation from close packed for the
small spheres, as is also shown by the packing fractions in
that case. This larger deviation from fluidlike scattering at
low Q implies many more voids in the smaller sphere
sample.

The mixed-sphere data at high Q, which show both oscil-
lations, appears close to a weighted average of the pure
sphere data. This is to be expected since these oscillations
result from single-sphere/air interface scattering. The data at
lower Q show scattering attributed to voids that are interme-
diate between the pure samples.

C. Model fits to unmixed spheres

The fit to the modified Percus-Yevick fluid model for the
unmixed spheres is shown in Fig. 3�a�. We notice a system-
atic deviation of the fit from the data in both plots. At high Q
the oscillations due to the sphere morphology wash out too
soon, while at the first peak the oscillation is too strong. If
we contemplate the measurable structure factors plotted in
Fig. 3�d�, we notice the general resemblance to those for a
typical fluid. However the nonempirical Percus-Yevick struc-
ture factor model is evidently not sufficiently flexible at
lower Q, and the empirical factor, the sphere polydispersity
factor �pS,� increases from its true value to attempt to com-
pensate in the fit at low Q. Apart from this minor deficiency
the model performs well. The values of the USANS packing
fraction discussed above and the remaining parameters in
Table I are not unreasonable. The derived value for the di-
ameter of the small spheres agrees with the dynamic light
scattering �DLS� value quoted by the manufacturer of the
spheres, while the larger sphere derived diameter is 76% of
the DLS value. In the large sphere case, however, the DLS
value has a large stated uncertainty, equivalent to 14% of the
diameter.

The significantly larger values in both cases for the struc-
ture factor polydispersity parameter than for the particle
structure factor shows that the structure is far from a Percus-
Yevick model fluid structure �illustrated in Fig. 3�c��. We
should not be surprised since at these packing fractions �0.4–
0.6� the Percus-Yevick approximation is known to fail. The
Debye-Buche void correction is highly significant for the
small spheres, but less so for the large �Fig. 3�b��, in agree-
ment with the higher achieved packing fraction. The void
sizes refine to values smaller than the sphere diameters in

both cases, indicating that the structure does not resemble a
fluid with spheres picked out, rather a fluid less efficiently
packed than a true fluid. The derived measurable structure
factors of Fig. 3�d� are reasonable, but given the caveats we
have made above a first-principles computer simulation
would be necessary to progress further in modeling.

D. Model fits to sphere binary mixtures

The fits for the mixed-sphere data are illustrated for the
50/50 mixture in Figs. 4�a�–4�c�. Figures 4�b� and 4�c� illus-
trate that the parameters associated with imperfect mixing
�F� and small-sphere large sphere structure factor correla-
tions �M� are both significant. The lower overall quality of
the fit in Fig. 4�a� compared to that for the unmixed spheres
in Fig. 3�a� suggests that these factors are not perfectly de-
scribed by our model.

We thus have three factors important in the mixed struc-
ture. We will call these “demixing,” “large-small correlation”
and “voids,” of which only the last is present in the unmixed
structures. Demixing is where the self-scattering terms
ISS�Q ,
L ,
S� and ILL�Q ,
L ,
S� from the Percus-Yevick
model are not adequate to describe these terms in the mix-
ture, and we need to include terms ISS�Q ,0 ,
S�� and
ILL�Q ,
L� ,0�, where 
S� and 
L� are the phase fractions for
unmixed pure sphere volumes. For simplicity this three-
phase model assumes that any demixing that occurs is
complete—so that the three regions are completely unmixed
small spheres, completely unmixed large spheres, and per-
fectly mixed spheres. Intermediate models where there are
local clusters rich in large spheres and separate local clusters
rich in small spheres are more physically appealing, but nec-
essarily introduce more empirical parameters. In most cases
the proportion of demixing required is large—about half of
the sample being demixed to form unmixed regions.

Demixing will of course reduce the large-small correla-
tion and thus ISL�Q ,
L ,
S�. From the fit we see this change
is resisted with M values refining to values greater than 1.
Thus there is more large-small correlation than we would
expect. If we accept the demixing, then we must conclude
that in those local volumes of mixed spheres the large and
small spheres are not randomly distributed. Large spheres
tend to self-avoid and are coated by small spheres more than
would otherwise be predicted.

Lastly voids in the mixed-sphere samples are smaller than
the large spheres and increase in amount as the small sphere
fraction increases. This is as we would naively expect, al-
though there is no reason to expect a linear interpolation. As
with gravity-dominated sphere mixing, where packing frac-
tion peaks in the mixed-sphere region, more complicated fac-
tors may intervene. The large-small correlation factor shows
mixtures are more than the sum of the parts.

Fantoni and Pastore �36� showed by Monte Carlo simula-
tions that binary mixtures do show features not found in
one-component systems. However Abate and Durian �42�
found little experimental difference between the various
large and small sphere correlations, apart from trivial size
scaling. The optical experiments of Sun Sevick-Muraca �26�
on colloids at lower packing fractions extract only one struc-
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tural parameter per mixture, but do support the conclusion
that large-small correlation is significant. These conflicts
may be related to the ratio of radii between large and small
spheres, respectively, 1.375 �42�, 1.667 �36�, 1.53 �26�, and
4.955 in this work.

The x-ray scattering experiments on relatively concen-
trated silica particle colloids, both pure relatively monodis-
perse and binary mixtures �17,24�, show good agreement
with Percus-Yevick fluid models. This extends to packing
fractions of 0.45, within the bounds of our experiments. The
discussion in this paper is based on an assumption that a
Percus-Yevick fluid solution is appropriate for these nonequi-
librium samples of high volume fraction and complex
sphere-sphere interaction. The relatively poor model fits for
the mixed-sphere data throws doubt on this, and the x-ray
data suggest that this is not due to the inaccuracy of the
Percus-Yevick model due to high packing fractions, but to
more fundamental physical causes—the sphere-sphere inter-
action potential is far from hard sphere, involving frictional
and electrostatic forces. A way forward is to extend the com-
puter simulation of Yang et al. �29� to mixtures, where these
extra forces can be taken into account. Given the richness of
the spectra this would seem profitable.

V. CONCLUSIONS

The USANS from unmixed small �1.5 mm diameter� and
large �7.5 mm diameter� PMMA spheres can be fitted by a
hard-sphere Percus-Yevick fluid model, which requires
modification in two ways. This contrasts with relatively di-
lute emulsions in which a simple Percus-Yevick fluid model
suffices �16�. The first modification is that a Debye-Buche
scattering term must be added, representing a significant
population of voids in the fluid with a void size that refines
to about a quarter of the sphere size. Second, the sphere-
sphere correlation function is not well fitted by using the
polydispersity in sphere radius. We must allow this to vary
independently for the form factors and the structure factors,
so that the structure factor polydispersity is actually now an
empirical factor allowing a better fit of the sphere-sphere
correlation. The model represents a fluid slightly less uni-
formly packed than a true fluid. The packing fractions ob-
tained compare well with those measured volumetrically and
indicate loose packing with significant frictional and/or elec-
trical forces compared to gravitational, particularly for the
small spheres.

The USANS from mixtures of small and large spheres can
be fitted to a related Percus-Yevick fluid model with Debye-
Buche void correction, but not as satisfactorily, requiring fur-
ther modifications to the model. We need to invoke two fur-
ther empirical parameters to produce an acceptable fit,
demixing, and large-small correlation parameters. The de-
mixing parameter adjusts the scattering to replace some of
the scattering from mixed spheres with that from volumes of
pure unmixed spheres. This is a simple approximation, which
does not account for the probable situation in which there are
local clusters rich in large spheres and separate local clusters
rich in small spheres. The large-small correlation parameter
highlights this, in that it reflects that in the volumes of mixed

spheres large and small spheres are not randomly distributed.
Large spheres tend to self-avoid and are coated in more small
spheres than we would otherwise predict.

The model for mixed spheres is cumbersome because the
mixed spheres do not resemble a Percus-Yevick fluid locally.
The structure contains voids, local clusters deviating from
the overall stoichiometry, and large-small sphere correlations
which are larger than expected. The five empirical param-
eters that we introduced are really only modifying the low Q
part of the data, so that the model is overparametrized in this
region.

Nevertheless it is clear that the USANS data on powders
contain nontrivial information relating to the packing, and
that a simple fluid model, with added empirical parameters,
can give physical insight into the system. A different theo-
retical approach, such as computer simulation, with fewer or
no empirical parameters is called for to understand these ef-
fects more effectively.
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APPENDIX

1. Unmixed-sphere intensity

We write the intensity of scattering from small spheres,
neglecting the void contribution as

ISS�Q� = 
S��VS����PS�Q���SSS
M �Q� , �A1�

where ��VS�� is the small sphere mean volume and ISS�Q� is
calculated exactly �24�, but using a variable structure factor
polydispersity. The subscripts refer to large �L� and small �S�
spheres. Thus we are using a different polydispersity for the
mean form factor �PS�Q�� �denoted as pS� to that used to
calculate SSS

M �Q� �denoted as qS�. Then when we use pS in
calculations and averages we write � � and when we use qS
we write �� �� �and similarly for the large spheres�.

We can then write the total intensity as

ISS�Q� = 
S��VS���PS�Q���SSS
M �Q� + SDB�Q�� . �A2�

The large sphere intensity is similarly approximated.

2. Mixed-sphere intensity

We will write a general equation for the observed inten-
sity, I�Q ,
L ,
S�, in a single phase mixture as

I�Q,
L,
S� = ISS�Q,
L,
S� + 2ISL�Q,
L,
S�

+ ILL�Q,
L,
S� + IDB�Q,
L,
S� . �A3�

ISL�Q ,
L ,
S� is the scattering intensity derived from inter-
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ference between large and small spheres whose packing frac-
tions in the mixture are 
L and 
S. That is �1−
L−
S� is the
packing fraction of air in the mixture. The terms
ISS�Q ,
L ,
S� and ILL�Q ,
L ,
S� are obvious by analogy.
The term IDB�Q ,
L ,
S� is used to account for the scattering
arising from the formation of voids within the mixture. We
now define each of these terms in more detail.

We choose to write IDB�Q ,
L ,
S� as

IDB�Q,
L,
S� = ��PS�Q��
S + �PL�Q��
L�/�
S + 
L�A0/�1

+ Q2	2�2. �A4�

For mixtures this analytical form is the simplest of the many
alternatives, which reduces to the approximation used for the
unmixed spheres at the limit where either of 
S and 
L is
equal to zero. It may be physically incorrect if, for example,
void sizes in mixtures are strongly biased to the volume of
the smaller particle.

The quantities ISS�Q ,
L ,
S�, ISL�Q ,
L ,
S�, and
ILL�Q ,
L ,
S� are more difficult to define. The exact solu-
tions for a Percus-Yevick bimodally Schulz polydisperse
fluid �25–27� cannot be directly applied since we have shown
above for the unmixed spheres that the sphere-sphere mea-
surable structure factor is substantially damped from these
calculated values.

For ISS�Q ,
L ,
S� �and similarly for ILL�Q ,
L ,
S�� we
can make the approximation

ISS�Q,
L,
S� = 
S��VS���PS�Q��SSS
M �Q� . �A5�

In a second approximation we write

ISL�Q,
L,
S� = M�
S��VS���PS�Q��
L��VL��

��PL�Q���1/2�SSL�Q�� , �A6�

where SSL�Q� is the structure factor cross term calculated by
the use of the monodisperse bimodal scattering theory of
Ashcroft and Langreth �23�. �SSL�Q�� is calculated by calcu-
lating SSL�Q� for all pairs of small and large sphere diameters
and making a weighted average of these with the product of
the appropriate Schulz sphere polydispersities. This is an at-
tempt to account for sphere polydispersity. M is a variable
allowing small-large sphere correlations to vary indepen-
dently of large-large and small-small correlations.

Lastly we have found it necessary to modify these sphere-
sphere correlations. We make the approximation

I = FI�mixed� + �1 − F�I�unmixed� . �A7�

I�mixed� is I�Q ,
L ,
S�. I�unmixed� is the sum of the scat-
tering from unmixed large and small sphere phases resulting
from complete demixing of a proportion �1−F� of the
sample. This approximation allows self-correlations,
ISS�Q ,
L ,
S� and ILL�Q ,
L ,
S�, to be modified to allow
for clustering not catered for in the Percus-Yevick model.
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